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CHAPTER V

. Some Numerical Methods for
‘ Discontinuous Flows in Porous Media

¢ PHILLIP COLELLA, PAUL CONCUS, AND JAMES SETHIAN

-

1. Introduction. The numerical modeling of fluid displacement through a
porous medium has received increased attention in recent years. Interest has
5 been stimulated by the development of enhanced recovery methods for obtaining
petroleum from underground reservoirs and the advent of larger, higher-speed
computers. A common feature found in most important recovery methods is the
propagation of fronts that are steep or discontinuous. Examples of such fronts are
d those involving different fluids, such as in the waterflooding of a petroleum
reservoir, or between regions of differing concentrations, as in some tertiary
L recovery processes. Even though steep {  :ts may not be present initially, they
can develop naturally in time as a consequence of the inherent nonl»nearxty of
fluid displacement in porous media.

Accurate following of steep fronts numerically can pose substantial dxfﬁcuhy
for conventional discretization micthods, which rely on underlying assumptions
on smoothness of solutions. In 2n attempt to overcome these difficulties, a study
was initiated several years agc in the Mathematics Group of the Lawrence
Berkeley Laboratory to develep high-resolution numerical methods for solving
the equations of flow through a porous medium. A discussion of this study is
given here with emphasis on the details of newer directions being pursued.
Included as well is some introductory background material given in an earlier,
less-detailed review [14].

Our study centers on numerical methods that incorporate analytical informa-
tion concerning the propagation of discontinuities in a flow. Such methods have
been effective in treating hyperbolic conservation laws arising in gas dynamics
and can be adapted in many cases to the equations of porous flow. The initial
parts of the study focused on the random choice method, a method that can track
solution discontinuities sharply and accurately in one space dimension. The
method represents a solution by a piccewise constant approximation and uses
Riemann problem solutions and a sampling procedure to advance in time. As a
first step this method was adapted to solving the Buckley~Leverett equation for
immiscible displacement in one space dimension. Extensions to more than one
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162 MATHEMATICS OF RESERVOIR SIMULATION

space dimension were carried out subsequently by means of operator splitting
(§3).

Because of inaccuracies that may be introduced for some problems at
discontinuity fronts propagating obliquely to the splitting directions, investiga-
tions of alternatives were initiated for multidimensional cases. A front tracking
method for multidimensional problems was developed based on the SLIC scheme
introduced in [26]. The method assigns to mesh cells a value representing the
fraction of the cell lying behind the front, and the cell fractions are then
appropriately advanced at each time step (§4). Two other methods, currently
under investigation, are a higher arder version of Godunov's method that utilizes
piecewise linear rather than piecewise constant segments for constructing conser-
vative fluxes (§5), and a method based on an improved splitting procedure, which
will be reported in {9].

2. Egquations for immiscible displacement. We consider the simultaneous,
immiscible flow of two incompressible fluids in an isotropic, homogencous porous
medium. We do not include the effects of capillary pressure, thus propagating
fronts will be sharp. For a region whose interior is free of sources and sinks (i.e.,
injection or production wells), onc is led to the equations [28]

(ST

. 0Os 3 ;
(2.1 3¢57+Q‘Vf(5)-75;g(3)-0,
(2:2) Veog-Q |
(23) L4 = =ME)[Tp - ()], s

In the above equations s(« t), 0 S 5 = I, is the saturation of the wetting fluid
(fraction of available pore volume occupied by the fluid). The saturation of the
nonwetting fluid is then 1 ~ 5. The independent variables x and ¢ are space and
time, respectively, and q(x, ¢) is the total velocity (sum of the individual velocities
of the two fluids). If gravity is present it is assumed to act in the negative z
direction, with e, the unit vector in the positive z direction. The quantity p(x, ¢) is
the excess over gravitational head of the reduced pressure; here the reduced
pressure is the average of the individual phase pressures less the gravitational
head. The quantity Q represents the sources and sinks of fluid on the boundary of
the domain, and ¢ is the porosity, which will be assumed constant. The quantity
7, the coefficient of the gravitational term, is the product of the acceleration due
to gravity times the density difference between the wetting and nonwetting
phases.

Equation (2.1) is the Buckley-Leverett equation, which for a given q is
hyperbolic. Equation (2.2) is the incompressibility condition, and (2.3) is Darcy's
law. For a given s, (2.2), (2.3) is elliptic.

The functions of saturation f(s), g(s), A(s), and 2(s) can be expressed in terms
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NUMERICAL METHODS FOR DISCONTINUOUS FLOWS 163

of the empirically determined phase mobilities (ratios of permeability to viscosi-
ty) A, and A, of the nonwetting and wetting fluids. For immiscible displacement
these are

ORI (ORI
B(s) =M /N, A =\, + A,

The quantities f, g, and g are nonnegative, and X is positive.

A distinguishing feature of the immiscible displacement equations is that fand
g are nonconvex. Typically f/ has one inflection, as depicted for a model case in
Fig. I, and g has two, as depicted in Fig. 2. Thus weak solutions may have
combinations of propagating shock and expansion waves in contact.

Attempts to solve (2.1), (2.2), (2.3), subject to appropriate boundary condi-
tions, by standard discretization methods such as finite difference or finite
clement methods can give rise to substantial difficulty. Inaccuracies may arise
near a moving front, or an incorrect weak solution may be obtained. To
circumvent these difficulties, the first phase of our study initiated an attempt to
adapt the random choice method to solving problems of fluid displacement in
porous media. ‘ '

3. Random choice method. The random choigg method, which was formu-
lated originally for solving the equations of gas dynamics, is a numerical method
incorporating the accurate propagation of solution discontinuities. It is based on
a mathematical construction of Glimm [17] that was developed into a practical
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and efficient computation algorithm by Chorin (6], {7]. It was first adapted to good
porous flow problems in [15], and applied extensively in [ 18] and related papers.
For a single nonlinear conservation law 3.1
, ‘ depei
‘ ds- a .
3.0 —~ 4+ —(s) =0, mmi
o 9z zion ¢
to which (2.1) reduces in one space dimension, the random choice method mag
¢ advances a solution in time as follows. The solution s(z,t,) at time ¢, is : the
represented by a piecewise constant function on a spatial grid of spacing Az, with
the function equal to s7 = s(z;, t,) in the interval z; — Az <z 5 z; + Az, An
exact solution of (3.1) is constructed analytically by the method of characteris-
tics for this piecewise constant initial data by solving the collection of Riemann
problems: (3.1) with initial data
st z <z, + hAz,
‘ (3.2) s(z,1,) =
]’ . st 2>z 4 hAz.
ik As long as the time increments At satisfy the Courant—Friedrichs—Lewy condi-
E* { tion (At/Az) - max|y¥'(s)| < ' (or <1 for forms of the method using half time
i steps on staggered grids), the waves propagating from the individual mesh-point
f! 5 t discontinuities will not interact during a given time step. This permits the
1 } j solution of (3.1) to be obtained during the step by joining together the separate
e

Riemann problem solutions.
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NUMERICAL METHODS FOR DISCONTINUOUS FLOWS 165

The above technique of obtaining the exact solution is common to other
methods, such as Godunov's method. What distinguishes the random choice
method is that the piecewise constant representation of the solution s is
constructed at the new time by sampling the exact solution at a point within each
spatial interval. In this way moving discontinuities remain perfectly sharp (since
nointermediate values are introduced by the method), at the price of introducing
a small amount of uncertainty into the position of the waves.

The sampling procedure for the random choice method should be equidistri-
buted to yield an accurate representation of the solution [7], [10]. The determin-
istic van der Corput sequence proposed in [10] has been found to be particularly
well suited for the method. The mth number 8, in the basic sequence is given by

M
B, = 2 027,
k-0
where the binary expansion for m is
M
n - Z szk.
k=0

Extensions for use with multidimensional problemsare given in [10].
The random choice method is essentially first afder and is observed to give
Y good results for one-dimensional problems. '

3.1 Riemann problems. The practicality of the random choice method
depends on being able to solve the Riemann problems efficiently. For the
immiscible displacement problem the furction y(s), which is a linear combina- ¢
tion of f (s) and g(s), has either one or two inflections, depending on the relative
i magnitudes of ¢ and v. If the gravity tern1 vg(s) in (2.1) is small compared with
the tr&nsport term g/ (s), then there is only one inflection in Y(s) (as in f(s) in
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166 MATHEMATICS OF RESERVOIR SIMULATION

Fig. 1), for which case the Riemann problem solution is given in [15]. For the
case of two inflections in y(s) the solution is given in [1], [4], and for a special
casein [29].

A typical example for which two inflections occur is depicted in Fig. 3, which is
taken from {4]. The Riemann problem solution is obtained by applying the
following general conditions, which must hold along any curve of discontinuity of
s(z,1): Let s_ = lim,., s(z,t) and s, =lim_., s(z, ¢} be the limiting values
from the left and right, respectively, at a discontinuity. Then there must hold (see
(24]. [27)):

(i) Rankine-Hugoniot jump condition. The curve of discontinuity is a
straight line with slope

dz  ¥(s,) —¥(s.)
dt s, —S_

(ii) Generalized entropy condition. For any s between s, and s_ there
holds

Y(s.) = ¥(s) _v(s) - ¥s)

S, — S, — §_

For the case s/ = 0 and s7,, = |, one obtains the solution of (3.1), (3.2)
depicted in Fig. 4. Figure 3 depicts the corresponding concave hull of y(s), whose
points of tangency with y(s) determine the shock propagation speeds. The two
shocks shown in Fig. 4 propagate to the left and right, respectively, from the
initial discontinuity. The characteristics from the left of the discontinuity
intersect the leftward travelling shock, and those from the right intersect the
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NUMERICAL METHODS FOR DISCONTINUOUS FLOWS 167

rightward travelling shock. Between the two shocks lies an expansion wave,
whose fan of characteristics emanates from the initial discontinuity.

Further discussion of the Riemann problem for these equations can be found in
[1} and [4].

3.2.  Operator splitting for multidimensional problems. For a one-dimensional
problem, the system (2.1), (2.2), (2.3) reduces to the single conservation law of
the form (3.1), since, in this case, q is constant in the interior. For a2 multidimen-
sional problem, a straightforward technique for solving (2.1), (2.2), (2.3} is to
solve successively (2.2), (2.3) for p (and q) taking s to be fixed at its approximate
solution for the current time, and then to advance (2.1) one time step considering
q fixed, to obtain an approximate solution for s at the new time,

Advancing (2.1} is carried out using the random choice method in [1], [2], and
[4] by means of operator splitting. Specifically, for two space dimensions, one
solves successively the one-dimensional problems for s

as 3
¢5;+ QXg;f(S) -Ov
ds ] g
¢35 t9:3,/0) - ‘Y‘é'Z'E{LI) - 0.

where q = (g,. ¢g.). Numerical examples can be found in [1], [2], and [4].

Although this technique is efficient and gives acceptable results for many
problems of interest, it can be inaccurate for some cases in which a shock front is
advancing obliquely to the splittirig ‘directions (for example, see [16]). A
modification of the split random choice method currently under development
overcomes these difficulties and has been shown to give very good results for two
spaEc dimensions {9].

4. Front tracking in more than one dimension: SLIC. If one is interested in
following the motion of a front in more than one dimension, several techniques
are available. One method, mentioned abaove, is to use the technique of operator
splitting to solve appropriate one-dimensional problems along each of the
splitting directions in succession until the full multidimensional solution is
achieved. In this technique, the location of the front, as such, is never used
explicitly. Instead, the movement of the front is implicitly contained in the values
of particular variables, in our case, the saturation.

Alternatively, one could choose to concentrate on the line of discontinuity and
follow its motion in time. A standard technique is to spread a collection of marker
particles along the front at the initial time in such a way that interpolation
through these points provides a good approximation to the initial line of
discontinuity. From this approximation to the front and the advection velocity
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168 MATHEMATICS OF RESERVOIR SIMULATION

provided by the hyperbolic equations being solved, the direction and speed of the
front at each marker particle are determined. Each particle is moved, and
interpolation provides the position of the front at the updated time. Of course, the
success of the technique relies heavily on the accuracy of the interpolation. Since
the direction of motion for each marker particle is obtained, in part, from the
orientation of the front at that point, small errors in this orientation can lead to
substantial error in the position of the front. In addition, as the marker particles
move, they can spread apart as well as bunch together, and it is not a simple task
to provide an accurate interpolation to the position of the front from such a
collection of points. A discussion of some of the problems inherent in these
methods when applied to flame propagation may be found in [31].

As a third alternative, a front tracking method can be based on a “volume of
fluid™ construction, such as the Simple Line Interface Calculation (SLIC)
developed in [26]. In this technique, a grid is imposed on the domain and each
cell is assigned a number corresponding to the fraction of that cell located behind
the front. These cell fractions are updated during each time step, in accordance
with the appropriate differential equations. The position of the front is approxi-
mated by a local construction in each cell, based on neighboring cell fractions.
This technique does not rely on a global interpretation of the front, and thus can
be highly effective in situations in which the front contains fingers and cusps.
This method of tracking moving discontinuous fronts is an integral part of a
flame propagation algorithm developed in [8], shown to be a natural construction
from the point of view of the theory of flame propagation in [31], and used with
highly successful results in [32] to model turbulent combustion. Such a method
was used in [25] to follow shoek discontinuities in Burgers’ equation and the
equations for two-phase porous flow. In the rest of this section, we discuss SLIC
and the application of this type of :ront tracking method to petroleum reservoir
simulations.

4.1. The method. We wish to follow the motion of a front in two space
dimensions and assume for now that the velocity at the front is known at all
times. We impose a square grid {i, j} of uniform mesh size on the domain, and
assign a number 0 = f;; < 1 to each cell, corresponding to the fraction of fluid in
that cell that is-located behind the front. In this discussion, we identify the fluid
behind the front as “‘black™ and the fluid ahead as “white.” Thus, a cell i,/ has
volume fraction f;; = 1 if it is entirely behind the front (black), a volume fraction
Ji; = 0if it is entirely ahead of the front (white), and f; ; between 0 and 1 if it
straddles the front. At any time step, an approximation to the front can be
constructed from this array of volume fractions. This interface is advanced under
the given velocity field by updating the fractions in the mesh cells in the following
manner: The motion of the front is split into a sweep in the x direction with
velocity v,, followed by a sweep in the z direction with velocity »,, where the
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velocity of the front is assumed to be (v,, »,). For each of these one-dimensional
problems, an interface that represents an approximation to the front is drawn in
each cell for which 0 < f;, < 1. The orientation of the interface depends on the
value of f; ; in both the cell and its neighbors. The “black” fluid is then advected
in the x(z) direction with velocity v,(»,), and the new f, /s are created, approxi-
mating the front advanced a distance v, At(v,At), where At is the time step.

The original algorithm used line segments parallel to either the x- or z-axis to
construct the local interface required for the one-dimensional sweeps. Numerous
improvements have been made since. Trapezoids were added to the list of
possible interface shapes, as well as thin slices of fluid to accommodate fingering.
Since interchanging the order of the sweeps wroduced diffcrent results, the
question of symmetry arose. One possible solution, of alternating the order of the
sweeps, was found to be ineffective. Instead, both contributions were performed,
and the new volume fraction in each cell was taken to be the maximum of the two
results. This preserved symmetry by removing a bias towards the first sweep
present in earlier calculations. -

In applying this algorithm to porous flow problems, interfaces oblique to 1hc
grid directions were ailowed in [25]. As an example of such an interface, consizer
#cell f;; with neighbors F\, F,, Fy, F,, Fs, F, Fy, and Fg, as in Fig. 5. We assume
that the sweep is in the horizontal direction to the right, i.ew, > 0, and assume
that, for example, £, # 0, F, # 0, F;, # 0 and F; = 0. We are interested in
establishing the location of the front within the center cell. From these volume
fractions, we see that fluid lies on the top, bottom, and left, and thus assume that
the front lies roughly parallel to the z-axis, as in Fig. 6. The slope of the interface
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170 MATHEMATICS OF RESERVOIR SIMULATION

is determined from the ratio of the amount of fluid above to the amount of fluid
below, namely,

and the requirement that the area of the trapezoid equal £, ;, i.e.,
'hh(x, + x4) = hz,[i,j v

where x, and x, are the length of the sides of the trapezoids as in Fig. 6, and A is
the size of the mesh. To advance the front under the time step At, we must move
the sloped interface under the appropriate velocity field. Let »,(»,) be the
horizontal velocity at the front along the top (bottom) of the center cell. We
translate the nodes of the trapezoid as follows

X XDy AL, X e X ko, . AL

where the superscript n + ' refers to the result aflter the first sweep with time
step At. There are three cases, depending on whether or not the trapezoid has
moved into the right cell. In Case 1 (Fig. 7a), the front remains in the center cell,
and the updated value of f; is easily seen to be ',

fZ* /2 %h(xrwlﬂ + xm-l/)) Ve

In Case 2 (Fig. 7b), one leg o}' the trapezoid has moved to the cell on the right.
Letting Af;; be the amount of ﬁuxd that has entered the cell on the right, the
center cell is updated to

fp;l/z : ,h(xnftll x;u/z) Y
while the cell on the right becomes
LI = flos + 0f,.
In Case 3, both legs of the trapezoid have moved into the right cell {Fig. 7c), and
S =,

while

::llj‘z ==f:!+1,j -+ Aj;-_,.
This concludes the one-dimensional sweep for the center cell. The full set of
possible interfaces is shown in Fig. 8; the reader is referred to [25] and [32] for
details.

Two points are worth mentioning. First, for any given cell, the orientation of
the interface in the x sweep may be different from that constructed in the z
sweep. Second, for the majority of cells, the value of f; ; and the neighboring f; 's
will be either all 0 or 1, implying that the front is not nearby. In these cases, no
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1ust move calculations are required, since the value of f;, will not change during the
) be the movement of the front. Judicious programming can avoid these situations
cell. We j - altogether, reducing the calculation from O(N?) operations to O(NV) operations,
where N2 is the number of cells.
with time 4.2, Algorithm for flow through porous media. We now summarize the
ezoid has algorithm presented in [25] for approximating the solution to problems of flow
:nter cell, through porous media. The general idea is to use the above front tracking method
to follow the discontinuity in 5. At each time step, values for the pressure and
velocity are obtained from s. This velocity field is used, together with the front
‘ tracking method, to move the line of discontinuity and update the saturation
the right. parameter. '
right, the . We consider solving (2.1), (2.2) and (2.3) for the case v = 0 (gravity effects
absent) for porous flow in a domain Q. For convenience, we absorb the porosity ¢
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into the other variables to obtain choic
3s itera
4.1) 5;+q-Vf(s)=0, E s
(4.2) V.q-0, ; 4.
the 1
(4.3) q=—-\s)Vp. both

Let 5" be the value of the saturation at time step nAr. We assume that s7; is com
known at the nodes of a square grid {i, j} imposed on Q. The pressures p{; are the
taken at the same grid points, and the velocities g, and ¢, will be evaluated at the exce
midpoints of the sides of the cell (see Fig. 9). sma

We shall describe the algorithm used to obtain 574" from s7;. With 57, known, leng
first p; is calculated at the grid points. This is accomplished by substituting (4.3) i don
into (4.2) to obtain an expression involving only p and A(s). A finite difference ' is pl
approximation to this expression is then solved, using the known values of 57, to i F
evaluate the necessary coefficient values for . Once the values of the pressure p;, " 3
have been obtained, a finite difference approximation to (4.3) can be used to !
produce the velocity field ¢" = (g%, 47). : - ;

To move to the next time step, the value of the saturation is updated according * wer
to (4.1). We use operator splitting to update s in two steps; a sweep in the x satL
direction followed by a sweep in the z direction. The technique for solving the qua
one-dimensional equation rests on our front tracking algorithm. Given the array \ non
of volume fractions f7,, we construct an approximation to the front, as described i calc
in the previous section, The Rankine-Hugoniot condition (§3) and the values of !

q" and s" provide the advection speed at the front. We compute the advection

! speed for all the cells of the front, and transport the black fluid to obtain the new
¢ /7572 Since we now know both the old and new positions of the front, we can
. compute the values of s”*'/* away from the front (the continuous parts) by any
one of a variety of methods. In [25], both Godunov's method and a random
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NUMERICAL METHODS FOR DISCONTINUOUS FLOWS 173
choice method are used to advance the solution. Given s™*'/2, we complete the

iteration by executing the sweep in the z direction, yielding the fully updated
S’Hl.

4.3.  Numerical results. In [25], numerical experiments were carried out for Q
the unit square, with Q corresponding to a source at (0, 0) and a sink at (1, 1),
both of unit strength. We describe those experiments here. On {1 the normal
component of g and the normal derivative of 5 are both taken to be zero. Initially,
the square is occupied entirely by “white” fluid to be displaced (i.e., s = 0),
except at the point (0, 0) at which s = 1. A 40 x 40 grid was used, with time step
small enough so that during one time step, (i) the front can travel at most one cell
length and (ii) the waves propagating from individual mesh-point discontinuities
do not intersect. At t = 0, the square is filled with fluid to be displaced. A source
is placed at (0, 0) and a sink at (1, 1), both of unit strength.

For the first test problem, the functions

.1'2

§) = ———— A(s) =5 + afl = 5)?
O T G (1-5)
were used. This corresponds to a phase mobility proportional to the square of the
saturation, and is representative of water flooding of a petroleum reservoir. The
quantity « is the ratio of the viscosity of the wetting fluid to that of the
nonwetting Auid (such as that of water to oil, respectively). Solutions were

calculated for several values of &, corresponding to mobility ratios M at the front

Fi1G. 10.
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[

FiG. 11.

in both the stable (M < 1) and the unstable (M > 1) range. Figure 10 shows the
results of a calculation with the above algorithm. With a value of M = 845, the
front reraains stable, as it should, and perturbations die out. in Figure 11, the
same cquations are solved with M = 1,397, a value in the unstable range. In this
casc, waves develop in the interface and fingering occurs.

The sccond test problem is on¢ for miscib'e displacement. For this problem

i

S8 =5 T Ms) s+ ML = s

were used. In Fig. 12 we show the results of a calculation with M = 2, well into
the unstable range. The initial and boundary conditions are the same as in the
previous case. The front is unstable, and a “fingering” effect is clearly visible.

5. Godunov-type methods. For a large class of physically interesting cases of
flow in porous media (e.g., incompressible flow with negligible capillary
pressure), the equations describing the flow can be written as a system of
nonlinear hyperbolic conservation laws for the saturations, with an elliptic
equation for the total velocity. Solutions to the hyperbolic equations can develop
discontinuities, even in cases in which none exist in the initial data. Consequently,
it is necessary to use numerical methods that can calculate accurately both
continuous and discontinuous solutions. A commonly used class of methods for
hyperbolic conservation laws is that of conservative finite difference or finite
elements methods. Conservative methods are ones for which the difference
equations for the saturations are in discrete divergence form, guaranteeing that
the total amount of each component of the fluid is conserved exactly. If the
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the method is in discrete divergence form, then discontinuities are constrained to
the - propagate, at least in some average sense, at the corrd’ét velocity.
the ;! One =lass of conservative finite difference techniques for calculating discontin- =
this g uous solutions to systems of hyperbolic conservation laws was introduced by

Godunov [19], [20] for gas dynamics. Godunov's method is a generalization to
systems of nonlinear equations of the upwind differencing method for scalar

: advection equalions. As such, it is generally too diffusive to represent discontinui-

i ties accurately. However, the higher order extensions of Godunov’s method, first

into 1 introduced by van Leer and then developed by a number of authors (for a review,
the see [22], [36]) have been demonstrated to be effective in calculating complicated

time-dependent discontinuous solutions to the equations of gas dynamics in two
space dimensions. Consequently, there is reason to believe that these methods
will prove useful in calculating solutions to multidimensional problems arising in

;?f petroleum reservoir simulation.
: oyf We shall discuss the Godunov methods only for the case of one space variable.
tic The one-dimensional form of these methods has been successfully used in
o multidimensional problems by means of operator splitting [5]. Multidimensional .
}yp methods that do not require operator splitting are currently under investigation.
AY, I

t . . ,

;Ohr 5.1. Scalar equations. We consider first Godunov's method for the scalar
e equation (3.1). We assume that at time 1” we know s, the average of s across
ce each mesh interval [(j — 2)Az, (j + R)AZ].

iat ‘ . U orGeymas .

he \ s7 = v ot s{z,t") dz.

¢
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In Godunov's method, we interpret the averages 57 as giving piecewisc constant
interpoiation functions of the solution in each mesh interval (Fig. 13)

(5.1) sz ") =55, (= dz<s<(j+ )bz,

Since we know the solution to the Reimann probiem, we can solve the initial
valuc problem given by (5.1) exactly (Fig. 14), for a time A1 sufficiently small so
that the waves from successive Riemann problems do not intersect. We denote
the exact solution by s7(z, t). In order to obtain s7*', the average of the solution
at the new time, we average s.{z, 1) over the jth mesh interval (Fig. 15)

' 1 e DAz
5.2 S - sz 1" + At) dz.
‘g ) J AZ~/(;~I/2)A1 s ) dz

If the solution has complicated spatial structure, the evaluation of the integral in

t

L.

- 32z - v2ar G + 1214z

FiG. 14,

(5.2
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(5.2) can be difficuit. By applying the divergence theorem to
i+ afds 3
[ e (@ W) g
G-l/nar I Jt oz

we obtain a difference formula for 57*'.

(5.3) 5j*' =57 = 2&12 f I~ WAE D) = WX + Rz 1)) dr.

We observe that s2((j + 'h)Az, 1) = 5771/, independent of 1, where 573172 is

obtained by evaluating the solution to the Riemann probiem for (3.1) along the
ray (z — (j — 'h)Az) /(¢ — ") = Q, with left and right states 57, s7,,. Thus we
obtain i

‘At " n+ ‘)
, (5.4) 7 =+ TR — v i)

The scheme is first order accurate, and is stable if (At/Az) max;|y'(s]) | s 1.

We now restrict our example further, by assuming ¢'(s) 2 0, for all 5. The
solution to the Riemann problem at (z — (j — '2)Az)/(t — (") = Ois always the
left state, implying that s}3)/3 = s7 in (5.4). Thus Godunov's method in this
situation reduces to upwind differencing, which is excessively dissipative. To
obtain an algorithm with less dissipative error we replace the piecewise constant
interpolation function (5.1) with one that is more accurate, and use the wave
propagation properties of the equation to derive a difference scheme of the form
(5.4).

The simplest such interpolation function we might use is a piecewise linear
interpolation function (Fig. 16)

(z — jAz)
Az '

(5.5) s(z,1") = 57 + Bs, (— WAz <z<(j+ hAz,




JES

com

Lem e

MATHEMATICS OF RESERVOIR SIMULATION

N

T

lj - 3/2122 G-12A2 G+ 12080

FiG. 16.

where &s,/Az approximates 9s/dz| ,, subject to some constraints described
below. Unlike the case for the piecewise constant interpolant, it is difficult to
solve the piecewise linear problem analytically. Consequently, the difference
scheme for the piccewise linear case is derived by approximating the time
integrals in (5.3). If we approximate them using the midpoint rule, we obtain

n+ld

At , L
;7 = 8]+ I ~ h)Azyl + hAD)

LGN + WA+ A

We then approximate the value s:((j = 'h)Az, 1" + hAt) by using the fact that
solutions to (3.1) are constant along characteristics. If we approximate the
characteristic through ((J, + YAz, 1" + ’/2A1) by the straight line (Fig. 17)

. 2(1) = (o WAz + (0 = (7 + han)yy'(si),
we obtain, using our interpolation function (5.5)
se((J + WAz, 17 + hAn) = s((j + WAz — hAat Y (s)), 1)
1 At
=57+ 3 (I - Eg(/(s})) bs;.
Collecting the approximations, we obtain the difference scheme
" » Ar e n+
sit =)+ 52 (s f2) = (ST
(5.6)
nvtf2 n
Sictpr = 8] + < (1 - *\b (55 ))5.5'
To complete the specification of the scheme, we need to define §s;. It is defined

in two steps. First, we calculate a preliminary value 63 using a ccntra} difference
formula, e.g., /»55 = ;.1 — §;_, (for other cxamples see {117, [35]). We then
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L,

T T T . 4+ At

112 R
';* iy -s;‘ . 1/2[‘! - aUAz ¥l l]ﬁ %

K dz/dt = w'ﬂg‘)

| !
li-3/2)82 (- 1/2142

T i+ W2ar

Fi6.17.

obtain our final value for 65; by constraining 5}} to be within certain bounds. The
purpose of the constraints is to prevent overshoots and undershoots at discontin-
uities. For example, the dashed profile in Fig. 18 represents a piecewise linear
interpolant for which the left extrapolated value is out of the range defined by the
adjacent zone averages. In that case, the slope is reduced so that the extrapolated
value lies just within range, as represented by the dotted line, Also, if a zone
average is a local extremum, then &5, is set’ to zero. Expressed quantitatively,
these constraints are given by

min()fs,l, 208 = 51 218 = 5,00 1) sign (5500 = 5520)
if(%»l“‘%)(%‘“ s5;-1) >0,

0 otherwise,

(5.7) s, =

JIn smooth parts of the solution, these inequalities are already satisfied by gf,,
so that &s; ~ &s,. With this choice of ds;, it is not difficult to show that, if the
solution is smooth, the scheme is formally second-order accurate.

AN
[ —— N
e N
:‘ -
\ e
N
N
] 1 - -
{i-3/2)az (j- 1/2)Az (i +3/2)Az

Fi6. 18.
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A numerical comparison between the first-order and second-order Godunov ple
methods is depicted in Figs. 19 and 20. For these problems s(z, 1) = 1 for les
0=2=20.2 and s(z, 0) =0 for 0.2 <z = 1. The dashed curves represent the SO
solution of (3.1) with Y(s) = f(s) = s?/(s* + 0.5(1 — 5)?) and Az = 0.02. The ex
first order method is depicted in Fig. 19 and the second order one in Fig. 20. The ta
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plotting routine indicates the data points by placing circles below them, more or
less tangent to the interpolating curve. The sohid lines in the figures represent the
solution for Az = 0.0025 using the second order method, which is essentially the
exact solution for this case (data points are not indicated). The time step At was
taken to be 0.1 Az for all cases, which corresponds to a CFL number of about 0.2.
The improvement in the solution using the second-order over the first-order
method is easily seen for this problem.

5.2. Systems of equations. We wish to extend the techniques described above
to the case of the initial value problem for systems of hyperbolic conservation
laws in one space variable

U AFW) _
at dz
U(z, 1) = UR x [0, T]— R",

F(U) = FRY—=R",  U(z,0) = Uy(2) given.

0,
(5.8)

In porous flow problems, U might be a vector of saturations, and F(U) the vector
of associated fractional flows. The system is assumed to be hyperbolic, i.c., the
matrix Vy F =~ A(U) has N real eigenvalues \ | ({) < - - + < Ay (U) with corre-
sponding left and right eigenvectors (/,, r\), - - -, (/y, ry). These eigenvectors
are linearly independent and biorthogonal, i.e., /, - r; = 0 if i #!j. If one expands
an arbitrary vector Win terms of the r,'s, then it follows from the biorthogonality
property that the expansion coefficients are given by :

i

7

N .
Wﬂzd[‘rh: ak=lf(' W, i
k-t

These eigenvectors and eigenvalues are used to describe the infinitesimal wave
propagation properties of the system (5.8). The characteristic curves of (5.8) are
curves in (z, ) satisfying the ordinary differential equations

dzk

do,

UG @), S kel....N

(5.9) o

In regions where the solution is not discontinuous, a solution to (5.1) satisfies for
each k an ordinary differential equation along the kth characteristic curve

d
(5:10) L - (U L@ =0, k=1 N,

Derivatives of the solution are transported along characteristics, the component
of the derivative transported along the kth characteristic being proportional to

Ty

X 52 e Wt g v AT Sl AN N
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As in the scalar case, we assume that Uj, the average value of the solution
across a mesh interval, is known at time ¢"

1 (Jel/DAz

U = —
Az Jo1naz

p Uz, 1Mdz.

We then wish to calculate U7*', the average value of the solution at time 1" + Ar.
As in the scalar case above, we do so in the following three steps: (i) interpolate
piecewise linear approximations to the solution at time "; (ii) use the wave
propagation propertics of the solution, in the form of Riemann problems and
characteristic equations to find approximate values Uj}}/3 to the solution at
((J + ')Az, 1" + ‘hAt); and (iii) perform a conservative finite difference step to
find U7*', of the form

At
(5.11) Uit = Up + = (FUISR) = FUUSERD).

Steps (1) and (ii) are at the heart of the method. In these two steps, we generalize
the algorithm given above for scalar equations by applying it one mode of wave
propagation at a time, using the characteristic equations (5.9), (5.10). Since the
characteristic form of the cquations breaks down at hocks, care is required to
guarantee that the algorithm reverts to something well-behaved near shocks.

The interpolation stép is a straightforward gencralization of what was done in
the scalar case, except that the constraints are imposed in characteristic
variables. We first calculate the preliminary value for the slope $U; =
(U, — U,_,). We then modify the slop:, using Harten's monotonicity algo-
rithm for characteristig‘;ariablcs [21]. We zxpand

|

A
¢ 2(U;,, — Uy = 3_afr (U),
ket

N
2(U; - U = 3_akre (U,

k=1
- N
3U; = >_a,r, (U).
. . k=)
i We then define
min{ ag |, [afl &) x sign (&) if ag-af>0,

R { : oy = .
| 0 otherwise.

The constrained slope is then given by

o e At

SU, =Y ar(U).

1 Given these interpolated profiles, we can now calculate UJ;1/3. The difficulty
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in calculating U}1}7} is that we want two rather different answers in two different

limits.' In smooth parts of the solution we want Uj':’.ﬁ to satisfy a finite

difference approximation to the characteristic form of the equations (5.9),
(5.10), i.e., we want it to satisfy the NV linear equations

 (UGHE = Upads k=1, -+, N,

where U;, 2, 1s the value of the solution at the base of the kth characteristic and
is given by

. At :
Uj +5(1 -‘A_ZA;‘)5UJ lka>0,
U1+l/2.k=

1 At A
;+|—"2'(] +Z:'Ak)aljj lf)\k<0‘

In the case for which (j + 'A)Az is inside a discontinuity, our interpolated profile
may look like the profile in Fig. 21, due to the constraints on 8U. In that case, we
want our solution U721/ to be given by the Riemann problem with left and right
states corresponding to the jump at (j + h)Az, plus some perturbation repre-
senting the slopes on cither side. Onc algorithm for U717} that has the
appropriate behavior is given in {13] for gas d}gﬁamlcs but extends easily to this

more general context.

U

L.

—

\__

A i ]
(i - 1/2)Az (i +1/2)az (i +3/2)Az

FiG. 21.

We take U]1}/3 to be the solution to the Riemann problem with left and right
states U;.i 15 Ujiyjars Biven by

(5.12) U;‘+l/z.L = U}IH/Z.L -~ Aj+t/2,1_ 5Uj»

ij+l/2.R = U}n/z.g T AR 5Uj+1

'In the scalar results presented above, we avoided this problem by assuming ¢'(s) 2 0.

-

el
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Here Ujiyja. = U} + 'h8U;, Ujypr=Uj,, — 'h8U,,;, and the operators
Ajy 1200 Ajerjar are sums of the characteristic projection operators

1 Ar
AjH/Z.LW’ Z 'Ak(U;)“—(lk(Uy) ‘ W)rL(U;)’
k:M(U7)>0 2 AZ

1
Aj+l/2.RW= Z Y

At
NULY— (UL - W "y
KA (UF <0 2 «(Ui) Az("( 1) r(U7)

The vector U, 11 (Ujiiar) is equal to the left (right) limiting value of U at
((j+'A)Az, 1") plus the amount of wave of each family contained in 8U,(8U,,,)
that can reach (j + 'A)Az from the left (right) between time 1" and 1" + 'AAL. If
|6U,1,18U;,,| «|U; = Uy, |, thenitis clear from (5.12) that U}1}/3 is given by a
small perturbation of the solution to the Riemann problem. If the solution is
smooth, then it is not difficult to show that U5%|/3 approximates, to second order,
a solution to the characteristic equations (5.9), (5.10). This follows from the fact
that, for weak waves, the solution to the Riemann problem reduces to transport
along characteristics.

Throughout this discussion, we have assumed that the Riemann problem for
(5.1) could be easily solved. In fact, this has been shown to be the case for only a
few of the systems of equations arising in multiphase flow in porous media [23],
[34], [35]. However, it is possible to introduce approximations into the solution
of the Riemann problem without loss of accuracy, since much of the information
in the Riemann problem is lost in the conservative differencing step. In particu-
lar, a class of approximate sclutions is proposed in [30}], and an explicit
constructive algorithm for such approximate solutions for general systems of
conservation laws is given in [12]. This class of approximate solutions is accurate

¢ in two limiting cases: if all the waves in the solution are weak, or if the solution
consists of a single strong wave. For incompressible flow in porous media, these
are the two most common sttuations since the magnitude and the direction in
U-space of the jumps across waves are independent of the direction of propaga-
tion of the wave.
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